Skip to content

Charts

Data visualization components. Charts provide graphical representation of data trends, making it easy to understand patterns and changes over time.

Profinity supports multiple chart types to visualize data in different ways:

Line Chart - Ideal for showing trends and changes over time:

Line chart component displaying data trends over time with connected data points

Line chart component displaying data trends over time with connected data points

Bar Chart - Perfect for comparing discrete values or categories:

Bar chart component displaying data comparison using rectangular bars

Bar chart component displaying data comparison using rectangular bars

Best for: Data trends, historical analysis, performance monitoring, visual data representation, time-series data

Parameters:

Parameter Type Description
id optional (string) Unique identifier for the chart
class optional (string) CSS class for styling
type required (string) Chart type - "bar", "line", "radar", "doughnut", "pie", "polarArea", "bubble", or "scatter". See Chart Types below for details
value required (object/array) Chart data (structured object with labels/datasets, or time series array)
legend optional (boolean) Show legend (default: false)
refreshInterval optional (number) Auto refresh interval in milliseconds (minimum: 0)
showControls optional (boolean) Show time range and refresh controls
min optional (number) Minimum value for chart scale (auto-calculated if not specified)
max optional (number) Maximum value for chart scale (auto-calculated if not specified)
label optional (string) Chart label
enabled optional (boolean) Whether the chart is enabled
visible optional (boolean) Whether the chart is visible
bind optional (array) Data binding configuration

Chart Types

Profinity supports the following chart types:

  • line - Line charts display data points connected by lines, ideal for showing trends over time
  • bar - Bar charts display data as rectangular bars, perfect for comparing discrete values
  • radar - Radar charts display multivariate data in a two-dimensional form
  • doughnut - Doughnut charts display data as a circular chart with a hole in the center
  • pie - Pie charts display data as proportional slices of a circle
  • polarArea - Polar area charts display data as sectors of a circle
  • bubble - Bubble charts display three dimensions of data (x, y, and size)
  • scatter - Scatter charts display data points across two axes

Example with Data Binding:

dashboard:
  items:
    - row:
        items:
          - chart:
              type: bar
              legend: false
              bind:
                - target: value
                  source: Prohelion BMU.[Property].PackData.CellTempsSummaryGraph   

Static Chart Example:

dashboard:
  items:
    - row:
        items:
          - chart:
              type: line
              legend: true
              value:
                labels: ["Jan", "Feb", "Mar", "Apr"]
                datasets:
                  - label: "Sales"
                    data: [65, 59, 80, 81]
                  - label: "Revenue"
                    data: [28, 48, 40, 19]

Time Series Chart Example:

dashboard:
  items:
    - row:
        items:
          - chart:
              type: line
              legend: false
              showControls: true
              refreshInterval: 1000
              bind:
                - target: value
                  source: "[TimeSeries].{COMPONENT_NAME}.BusMeasurement.BusCurrent"